Identification of a Phosphorylation-Dependent Nuclear Localization Motif in Interferon Regulatory Factor 2 Binding Protein 2
نویسندگان
چکیده
BACKGROUND Interferon regulatory factor 2 binding protein 2 (IRF2BP2) is a muscle-enriched transcription factor required to activate vascular endothelial growth factor-A (VEGFA) expression in muscle. IRF2BP2 is found in the nucleus of cardiac and skeletal muscle cells. During the process of skeletal muscle differentiation, some IRF2BP2 becomes relocated to the cytoplasm, although the functional significance of this relocation and the mechanisms that control nucleocytoplasmic localization of IRF2BP2 are not yet known. METHODOLOGY/PRINCIPAL FINDINGS Here, by fusing IRF2BP2 to green fluorescent protein and testing a series of deletion and site-directed mutagenesis constructs, we mapped the nuclear localization signal (NLS) to an evolutionarily conserved sequence (354)ARKRKPSP(361) in IRF2BP2. This sequence corresponds to a classical nuclear localization motif bearing positively charged arginine and lysine residues. Substitution of arginine and lysine with negatively charged aspartic acid residues blocked nuclear localization. However, these residues were not sufficient because nuclear targeting of IRF2BP2 also required phosphorylation of serine 360 (S360). Many large-scale phosphopeptide proteomic studies had reported previously that serine 360 of IRF2BP2 is phosphorylated in numerous human cell types. Alanine substitution at this site abolished IRF2BP2 nuclear localization in C(2)C(12) myoblasts and CV1 cells. In contrast, substituting serine 360 with aspartic acid forced nuclear retention and prevented cytoplasmic redistribution in differentiated C(2)C(12) muscle cells. As for the effects of these mutations on VEGFA promoter activity, the S360A mutation interfered with VEGFA activation, as expected. Surprisingly, the S360D mutation also interfered with VEGFA activation, suggesting that this mutation, while enforcing nuclear entry, may disrupt an essential activation function of IRF2BP2. CONCLUSIONS/SIGNIFICANCE Nuclear localization of IRF2BP2 depends on phosphorylation near a conserved NLS. Changes in phosphorylation status likely control nucleocytoplasmic localization of IRF2BP2 during muscle differentiation.
منابع مشابه
Novel properties of the protein kinase CK2-site-regulated nuclear- localization sequence of the interferon-induced nuclear factor IFI 16.
Members of the interferon-induced class of nuclear factors possess a putative CcN motif, comparable with that within proteins such as the simian virus 40 large tumour antigen (T-ag), which confers phosphorylation-mediated regulation of nuclear-localization sequence (NLS)-dependent nuclear import. Here we examine the functionality of the interferon-induced factor 16 (IFI 16) CcN motif, demonstra...
متن کاملThe regulation of protein transport to the nucleus by phosphorylation.
Since the identification over 10 years ago of the sequence responsible for the nuclear localization of the simian virus 40 (SV40) large tumour antigen (T-ag) and the demonstration of its ability to target heterologous, normally non-nuclear, proteins to the nucleus, research in the field of nuclear transport has largely revolved around the idea of nuclear localization signals (NLSs) being exclus...
متن کاملCloning and molecular characterization of TaERF6, a gene encoding a bread wheat ethylene response factor
Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a novel one based on TdERF1, an isoform in durum wheat (Tri...
متن کاملStimulus-induced uncoupling of extracellular signal-regulated kinase phosphorylation from nuclear localization is dependent on docking domain interactions.
Many stimuli activate the extracellular signal-regulated kinase (ERK) by phosphorylation on the TEY motif. Activated ERK characteristically accumulates in the nucleus, but the underlying mechanisms involved are unclear. Using automated microscopy to explore ERK regulation in single intact cells, we find that, when protein kinase C or epidermal growth factor receptors are activated, a substantia...
متن کاملتجزیه و تحلیل فیلوژنتیکی و آنالیز In Silico پروتئین اینترفرون بتا 1 بی
Background and purpose: Interferon beta-1b recombinant protein is used for reducing the relapse rate and treatment in patients with Multiple sclerosis (MS). In this study, phylogenetic and in silico analysis of interferon beta-1b were conducted by servers and bioinformatics tools to predict its structural potential. Materials and methods: Physiological and physico-chemical characteristics of...
متن کامل